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Figure 1: Left to right : Computation of orthogonal net of lines of curvature of automobile surfaces. Two-layered principal strips (maximum
principal strips on the visible side). Two-layered principal strips (minimum principal strips on the visible side). Woven principal strips.

Abstract

Current CAD modeling techniques enable the design of objects
with aesthetically pleasing smooth freeform surfaces. However,
the fabrication of these freeform shapes remains challenging. Our
novel method uses orthogonal principal strips to fabricate objects
whose boundary consists of freeform surfaces. This approach
not only lends an artistic touch to the appearance of objects, but
also provides directions for reinforcement, as the surface is mostly
bent along the lines of curvature. Moreover, it is unnecessary
to adjust the bending of these orthogonal strips during the con-
struction process, which automatically reforms the design shape
as if it is memorized, provided the strips possess bending rigid-
ity. Our method relies on semi-isometric mapping, which pre-
serves the length of boundary curves, and approximates angles be-
tween boundary curves under local minimization. Applications in-
clude the fabrication of paper and sheet metal craft, and architec-
tural models using plastic plates. We applied our technique to sev-
eral freeform objects to demonstrate the effectiveness of our algo-
rithms.

Concepts: •Computing methodologies→ Parametric curve and
surface models;
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1 Introduction

Aesthetically pleasing smooth surfaces are widely used in engineer-
ing applications, such as in the design of the bodies of automobiles,
bullet trains, and ships, which have both functionality and attractive
shape requirements. They are also used in the design of consumer
products, furniture, and architecture containing aesthetic shapes.

However, the fabrication of these freeform shapes continues to
pose new challenges. In this paper we introduce a novel method
based on the use of orthogonal principal strips to fabricate such
objects of which the boundary consists of freeform surfaces. Prin-
cipal patches, which were introduced by Martin [1983], are patches
whose sides are lines of curvature. These lines are curves on a sur-
face whose tangent at each point is in a principal direction at that
point. Because at each (non-umbilical) point there are two prin-
cipal directions that are orthogonal, the lines of curvature form an
orthogonal net of lines.

In engineering mechanics, it is well known that higher stresses oc-
cur in higher curvature regions [Fischer-Cripps 2007]. Since sur-
faces are bent the most along the lines of curvature, they indicate
the directions for structural reinforcement. Furthermore, a non-
orthogonal structure may be strong in a certain direction but weak
in the direction orthogonal to that direction, whereas an orthogonal
structure with lines of curvature can resist forces acting in arbitrary
directions. Although it is a matter of taste, the lines of curvature
generate an artistic pattern on the surface and can be used for paper
and metal crafts and in architecture.

Pottmann et al. [2008] approximated the segmentation of the prin-
cipal model into pieces of right circular cones, and into pieces of
Dupin cyclides, which are known as principal strips, for applica-
tions in architecture and manufacturing. Although our definition of
a principal strip is conceptually similar to that of [Pottmann et al.
2008], our mathematical formulation is different in two ways. First,
they restricted the models of the principal strip to circular and con-
ical models, which are convenient for panelization, whereas our
formulation is based on the computation of lines of curvature on
general freeform surfaces. The other major difference is that the
method by Pottmann et al. [2008] relies on global optimization,



whereas our method is based on local optimization, which is much
faster.

Our method entails mapping the four sides of each principal patch
onto a plane by preserving the exact length and by connecting the
sides approximately orthogonal to each other. We refer to the re-
sulting quadrilaterals as principal quads (see Fig. 13 (b)). The dis-
tinguishing feature of our method is that the unfolding process is
reduced to solving Newton’s method with a single variable for each
principal patch. Moreover, in the presence of umbilical points, or
the involvement of boundary curves (generally not the curvature
lines), the resulting patch could be an N-sided patch; however, our
unfolding algorithm can easily be extended to accommodate this.

Once all the principal patches are unfolded onto the plane, we con-
nect each of the principal quads one by one by aligning the equi-
length adjacent edges using translations and rotations. If the align-
ment occurs along the minimum principal curvature lines, the re-
sulting strip is the maximum principal strip, and vice versa (see
Fig. 13 (c), (d)). These strips can be assembled to form the orig-
inal 3D shape in two ways. A pair of layers - one consisting of
the maximum and the other consisting of the minimum principal
strips - forms an orthogonal two-layered structure (see Fig. 13 (e),
(f)). Alternatively, plain-weaving is employed, in which each max-
imum principal curvature strip is alternately placed over the mini-
mum principal curvature strip, then underneath the next, and so on
(see Fig. 13 (g), (h)). In both cases, each corresponding principal
quad is positioned to overlap at the same location to reconstruct the
3D shape, one with maximum and the other with minimum princi-
pal curvature.

This paper makes the following contributions:

• We introduce a novel system to reconstruct freeform objects
by using orthogonal two-layered principal strips and woven
principal strips, which can be used for paper craft, sheet metal
craft, and architectural models.

• Our unfolding algorithm reduces to finding the root of a single
variable nonlinear equation, which is easy to implement and
computationally fast. Moreover, it is able to compute situa-
tions in which umbilical points occur, i.e., where the orthogo-
nal net of lines of curvature becomes singular.

• The fabricator does not need to adjust the amount of bend-
ing of the strips during construction, as the construction pro-
cess of the orthogonal strips automatically reforms the design
shape as if the shape is memorized provided that the strips
possess bending rigidity.

2 Related work

Elber [1995] approximated a given NURBS surface by a set of de-
velopable strips within a prescribed tolerance. Each developable
surface can then be unfolded, laid flat, and cut from a planar sheet
such as paper or metal. However, he used a loose upper bound on
the Hausdorf distance, resulting in a larger number of strips than
is necessary [Massarwi et al. 2008]. Massarwi et al. [2008] intro-
duced an algorithm to approximate a two-manifold 3D mesh with
global error bounds by a set of developable surfaces consisting of
generalized cylinders that are represented as a strip of triangles;
nevertheless, the method cannot accommodate open models. Mi-
tani and Suzuki [2004] introduced a method for generating unfolded
papercraft patterns of rounded toy animal figures represented by a
triangular mesh, by approximating the mesh model in terms of a set
of continuous triangle strips with no internal vertices. The unfolded
patterns were cut out by the cutting machine, and assembled using
scotch tape. However, the parameters used in the algorithm were

determined by trial and error, and the method is not able to specify
the approximation tolerance to the input mesh model. Shatz et al.
[2006] introduced an algorithm for segmenting a mesh into devel-
opable approximations that can be used for paper crafting. These
contributions [Elber 1995; Massarwi et al. 2008; Mitani and Suzuki
2004; Shatz et al. 2006] are limited in that they neither intend to
generate orthogonality in the structure nor do they intend leaving
room for adding strength to the structure.

Alliez et al.[2003] introduced anisotropic remeshing, where a cur-
vature tensor field is estimated on a triangulated mesh, and then
lines of curvature are traced on the mesh with a local density
guided by the principal curvatures. The resulting mesh consists
of anisotropic quads aligned to the principal directions, and trian-
gles in isotropic regions. Marinov and Kobbelt [2004] extended the
techniques by [Alliez et al. 2003] such that it does not rely on a
global parameterization of the mesh and therefore is applicable to
arbitrary genus surfaces. Tensor field topology was discussed in
[Zhang et al. 2007].

Liu et al. [2006] showed how to approximate surfaces with meshes
composed of planar quadrilaterals, so-called PQmeshes. They min-
imally perturbed the vertices of the input quadrilateral mesh into
new positions such that the resulting mesh is a PQ mesh. The pla-
narity condition of a quad face was expressed by enforcing the four
angles enclosed by the edges of the quad to sum up to 2π. They
used SQP to minimize the energy functionals defined by a fair-
ing term and a term that forces the approximated surface to remain
close to the original surface subject to the two planarity constraints.

Pottmann et al. [2008] studied the problem of covering a freeform
surface by single curved panels, in particular conical and circular
models, which semi-discretize the network of principal curvature
lines. A D-strip model, which consists of B-spline D-strips whose
control points are subjected to optimization by minimizing the tar-
get functional. The functional constituents measure closeness to the
input B-spline surface, closeness to the boundary curve, developa-
bility of the strips, and fairness. Furthermore, they developed the
concept of principal strips, which are optimized towards circularity
or conicality from a curve network not too far from principal curva-
ture lines. Optimization towards circular or conical strips makes
use of geometric functionals, which penalize deviation from the
appropriate angle equalities. In general, the construction of prin-
cipal patches is difficult except for that of simple surfaces such as
surfaces of revolution and Dupin cyclides whose sides are circu-
lar arcs. Kilian et al. [2008] introduced an optimization approach
for the design and digital reconstruction of surfaces which can be
generated by curved folding.

Akleman et al. [2009] introduced a method of creating plain-
weaving structures based on graph rotation systems over an arbi-
trary surface. They only rendered the computational models and
did not reconstruct the physical models. Garg et al. [2014] pre-
sented a computational approach for designing freeform surfaces
composed of woven wires arranged in a regular grid. They mapped
the properties of wire meshes to the geometric model of Cheby-
shev nets. However, their approach requires preparation of the 3D
scaffold such that the wire mesh can be bent into place.

Our work is inspired by the work of Pottmann and his coworkers
and their use of principal strips [Pottmann et al. 2008]. While
Pottmann et al. [2008] focused more on the panelization of
freeform surfaces using surfaces of revolution and Dupin cyclides,
our method focuses more on the orthogonality of the principal strips
using general freeform surfaces. Moreover, our method relies on
local optimization, which improves the computational efficiency.
Most importantly, our study introduces novel methods to fabricate
freeform objects in two ways using orthogonal principal strips.



3 Construction of orthogonal net

3.1 Lines of curvature

The lines of curvature are computed as the solution of the ini-
tial value problem of the coupled nonlinear differential equations
[Maekawa et al. 1996]. The solution for a parametric surface
r(u, v)=(x(u, v), y(u, v), z(u, v)) generates a sequence of param-
eter pairs (uk, vk), which yield an ordered set of estimated points
along the lines of curvature. Joo et al. [2014] introduced a method
to compute the differential geometry properties of the lines of
curvature, such as curvatures and torsions, and their higher-order
derivatives. They completely defined them in terms of surface pa-
rameterization using the fact the discrete points are on the lines of
curvature. This allows these differential geometric quantities to be
evaluated exactly at the estimated points on the line of curvature,
avoiding problems with discretization errors that arise when esti-
mating higher-order derivatives by finite differences. Furthermore,
Joo et al. [2014] flattened the lines of curvature onto a plane using
the fact that curves on isometric surfaces have the same geodesic
curvature at the corresponding points [Kreyszig 1968]. In other
words, lines of curvature can be flattened onto a plane while pre-
serving their length by integrating the Frenet-Serret formulae where
the geodesic curvature of the lines of curvature is used for the curva-
ture in the formulae. Because signs are involved in determining the
magnitude of the principal curvatures, the magnitude is best judged
without signs. Therefore, we ignore the sign when summing up the
magnitude of each principal curvature at the uniform grid points
in the parameter space, and the larger curvature is redefined as the
maximum principal curvature and vice versa after all the lines of
curvature have been computed. Hereafter, red and blue lines repre-
sent the maximum and minimum principal curvature, respectively.

3.2 Fairing of freeform surfaces

In our research we assume that the input freeform surfaces are
smooth without any bumps. Therefore, in case the input surface
is bumpy, we apply smoothing by using a surface fairing algorithm
[Dietz 1998], as the lines of curvature are very sensitive to small ir-
regularities in the shape. The fairing algorithm is set up to minimize
the following objective function Fair

Fair =

N∑
k=0

|R(uk, vk)−Qk|2 + λfFs , (1)

where Qk, k = 0, . . . , N are the grid points on the input surface
that are mapped from the evenly spaced points in the parametric
domain. R(uk, vk), k = 0, . . . , N are the corresponding points on
the approximating surface, and Fs is a smoothing term that enforces
the fairness of the approximating surface, λf is a user-defined pa-
rameter that weighs the importance of the fairing factor. If λf is
small, the resulting surface may not be smooth, yet it will be highly
accurate. On the other hand, if λf is large, the resulting surface
will be smooth, but it may not be highly accurate. Accordingly,
it remains difficult to find an optimal λf ; hence, we interactively
increase λf until the lines of curvature are sufficiently smooth as
shown in Fig. 2.

3.3 Distribution of lines of curvature

Our goal is to cover a 3D surface with a set of evenly-spaced lines
of curvature. However, controlling the density of these lines is very
difficult, yet this is one of the most important key points in achiev-
ing a successful principal strip model. We assume that the para-
metric speed of isoparametric curves in both the u and v directions

Figure 2: Fairing process. Left column shows color-coded position
errors (normalized by the length of the bounding box diagonal of
the model), while right column depicts the lines of curvature of a
ship hull. (top row) λf=0.0. (middle row) λf=0.01. (bottom row)
λf=0.1.

of the input surface does not vary significantly. Let us first define
two sets of uniform lines u = iΔu (i = 1,. . .,M-1) and v = jΔv
(j = 1,. . .,N-1) in the uv-parametric domain where Δu=1/M and
Δv=1/N, respectively. The algorithm proceeds on a row-by-row
basis followed by a column-by-column basis. The first seed point
is placed at the center of the lowest v, i.e., (0.5, Δv). We compute
the lines of curvature as an initial value problem in both directions
(forward and backward) for one of the principal curvatures as illus-
trated in Fig. 3. We recursively divide the line v = Δv into two
by placing the seed point at the middle of the interval [(0.0, Δv),
(0.5, Δv)], if there is no line of curvature passing through the in-
terval, otherwise we do nothing until the divided intervals become
sufficiently small. We move up to the next line v = 2Δv and re-
peat the same process until we reach v = 1- Δv. Next, we apply
the same algorithm to the other principal curvature. We repeat the
same procedures to the u-direction in a column-by-column basis.

Figure 3: Algorithm for distributing lines of curvature on the row-
by-row basis. Left-to-right, top-to-bottom. Large intervals with
blue arrows are subjected to assign a seed point at the middle of
the interval, while small intervals with black arrows are already
small enough to assign further seed points.

The resulting lines of curvature have three patterns. The first pat-
tern is a curve that runs from surface boundary to boundary where
most of the lines of curvature fall into this category (see blue lines
in Fig.4 (a) and (b)). The second pattern forms an internal loop
that appears when the surface possesses reflectional symmetry and
a pair of lemon-type umbilical points are located at symmetric posi-
tions as shown by the red lines in Fig.4 (a). The third pattern forms
a nearly closed loop, which is observed when the second pattern
loses its symmetry, which is illustrated by the red lines in Fig.4 (b).

We judge the third case by computing three distances between the
last three ordered sets of estimated points along the lines of curva-



(a) (b)

Figure 4: Three patterns of lines of curvature. (a) Elliptic
paraboloid having internal loops (red lines) and ones that run from
surface boundary to boundary (blue lines). (b) Nearly closed loop
(red lines).

ture computed from the seed point in both directions (forward and
backward), namely,

di = |r(uNF+i, vNF+i)− r(uNB+i, vNB+i)|, i = −1, 0, 1 , (2)

where NF and NB are the number of integrated points of the lines
of curvature in the forward and backward directions, respectively
(see Fig. 5 (a)). We terminate the Runge-Kutta integration if d−1,
d0, and d1 are all within the prescribed small distance, and d0 has
the smallest distance among the three distances. Then we close the
gap between the two points (uNF , vNF ) and (uNB , vNB ) in the
parameter space in order to generate a successful principal patch by
distributing half of the signed gap to each integration point of the
lines of curvature in the forward and backward directions along the
difference vector between the two points with linearly increasing
weights (zero at the seed point, and one at the closing point) such
that the closing point is

(
uNF

+uNB
2

,
vNF

+vNB
2

)
as shown in Fig.

5 (b).

(a) (b)

Figure 5: Closing the gap for nearly closed loop. (a) Three dis-
tances between the last three ordered sets of estimated points along
the lines of curvature computed from the seed point in both direc-
tions (forward and backward). (b) Closing the gaps in parameter
domain.

3.4 Editing of orthogonal net

In Section 3.3 we introduced an algorithm to automatically cover
a 3D surface with a set of evenly spaced lines of curvature. How-
ever, dense lines of curvature tend to occur in high-curvature re-
gions, whereas sparse lines appear in low-curvature regions. Ac-
cordingly, we introduce a graphical user interface (GUI) to enable
users to adjust the density of the final orthogonal net of principal
curvature lines by applying ′add′ and ′delete′ functions. Once the
user selects one of the principal curvatures, they click a seed point

on the surface, where the lines of curvature are sparse, to add new
lines of curvature in both the forward and backward directions. The
′delete′ function deletes any existing lines of curvature by clicking
any points on the lines of curvature the user wishes to delete (see
Fig. 6).

(a) (b)

Figure 6: Adjusting density of lines of curvature. (a) Before editing.
(b) After editing.

4 Unfolding of principal patches

In general, principal patches are not developable, therefore they
must be approximated to be unfolded onto a plane. In this sec-
tion we present the results of our study to unfold principal patches
one by one to generate principal quads based on the fact that a line
of curvature of a surface can be flattened onto a plane preserving its
length using the geodesic curvature of the line of curvature.

4.1 Four-sided patch

(a) (b) (c)

Figure 7: Unfolding of principal patch. (a) Four sides of principal
patch. (b) Unfolded four sides. (c) Principal quad.

We flatten the four sides of each principal patch onto a plane. At this
point, the four edge curves lie arbitrarily on the plane as shown in
Fig. 7. Therefore, we transform each curve to form a topologically
rectangular shape with the same order in 3D space as illustrated in
Fig. 7. However, when the four lines are linked, the four angles
between the lines connecting the two end points of the two adjacent
curves are not decided. Because we are assuming isometry between
the principal patch and the unfolded principal quad, all four angles
of the quad are required to approximate right angles. Let us denote
the vertices and the corresponding vertex angles of the four curves
as Vi, ωi (i = 0, · · · , 3) as illustrated in Fig. 8 (a). If we denote
the four vertex angles of the quadrangle as Ψi (i = 0, . . . , 3), and
denote the angles between the flattened curve and the straight line
connecting the two end points of the curve to be δi,1, δi,2 (i =
0, . . . , 3), where the sign is positive when the angle is outside of the
quadrangle, and vice versa. We note that δi,1, δi,2 (i = 0, . . . , 3)
are inherited from the original principal patches, thus we keep them
unchanged. Referring to Fig. 8 (a) and (b), we have

ωi = Ψi + δi,1 + δi,2, i = 0, · · · , 3 . (3)

We connect V1 andV3, and define θi, αi, βi (i=0,1) as illustrated
in Fig. 8 (c). It seems redundant to define θi, αi, βi at this moment;



however, they are useful when the algorithm is extended to an N-
sided patch. If we fix θ0, the angles θ1, αi, βi (i = 0, 1) can be
determined using the cosine theorem of trigonometry and the fact
that angles in the triangle add to π:

e2 = a2 + d2 − 2ad cos θ0 , (4)

α0 = cos−1

(
a2 + e2 − d2

2ae

)
, (5)

β0 = π − θ0 − α0 , (6)

θ1 = cos−1

(
b2 + e2 − c2

2be

)
, (7)

α1 = cos−1

(
b2 + c2 − e2

2bc

)
, (8)

β1 = π − θ1 − α1 . (9)

Accordingly, we have

Ψ0 = θ0, Ψ1 = θ1 + α0, Ψ2 = α1, Ψ3 = β0 + β1 . (10)

Because the corresponding vertex angles of the principal patches
are all equal to π

2
, we can set up an optimization problem to mini-

mize the objective function Fang:

Fang(θ0) =

3∑
i=0

(
ωi(θ0)− π

2

)2

, (11)

which leads to finding a root of the single variable nonlinear equa-
tion with respect to θ0:

Ḟang(θ0) =

3∑
i=0

2
(
ωi(θ0)− π

2

)
ω̇i(θ0) = 0 . (12)

where ˙ denotes the derivative with respect to θ0. Equation (12) can
easily be solved by Newton’s method. We list the first and second
derivatives required for Newton’s method in Appendix A.1. The
initial value for Newton’s method is determined as follows: If one
of the four angles of the quadrangleΨi is fixed, the rest of the three
angles are determined automatically, therefore, we first calculateΨi

using (3) assuming ωi =
π
2
for i = 0, . . . , 3, and for each Ψi, we

compute Ψj (j �= i) using equations similar to (4) ∼ (9). Finally,
we average the four estimated Ψ0 at V0 and set θ0 = Ψ0. Once
θ0 is found, the remaining angles Ψi and ωi (i = 0, . . . , 3) are
determined from (10) and (3), respectively.

(a) (b) (c)

Figure 8: Four-sided patch. (a) Unfolded four-sided patch, (b)
Four-sided polygon generated by connecting the four corners of (a).
(c) Definitions of θi, αi, βi.

In general, surface boundary curves are isoparametric curves and
are not lines of curvature. Therefore, if the boundary curves are
included in the patch, geodesic curvature for isoparametric lines
should be used for the flattening process, and the angles between
isoparametric lines and lines of curvature, and the angles between
two isoparametric curves must be used instead of π/2 as well.

In case the lines of curvature pass near umbilical points or the patch
includes surface boundary curves (non-curvature line), the resulting
patch will generally not be a four-sided patch; instead, it is more
likely to be an N-sided patch. In the following sections, we show
that the method for processing four-sided patches can be extended
to N-sided patches.

4.2 Two- and three-sided patches

Figure 9: Two- and three-sided
patches.

In case the lines of curva-
ture pass near a lemon-type
umbilical point, a two-sided
principal patch is generated
as shown in Fig. 9. In such
cases, we flatten the two
curves and split them in the
middle to form a four-sided
patch, since the lines con-
necting the two end points of
the two curves, in general,
do not have the same length. The angle between the two split curves
is π. Note that in the process of unfolding the patches which share
these two curves, we use the same split two curves for the quads
for compatibility reasons. A three-sided patch often occurs near
the surface boundary curves, and because the three edges of the
flattened curves determine a unique triangle, there is no need for
optimization.

4.3 N-sided patch (N ≥ 5)

Similar to the four-sided patch case, we denote the N vertex angles
of the N-sided polygon asΨi, (i = 0, · · · , N − 1), and the two an-
gles between each flattened curve and the straight line connecting
the two end points of the curve to be δi,1, δi,2, i = 0, · · · , N − 1,
where the sign is positive when the angle is outside of the quad-
rangle, and vice versa. Our task is to determine the angles ωi(i =
0, · · · , N − 1).

Figure 10: N-sided polygon.

We construct N-2 triangles
by connecting Vi (i =
1, · · · , N − 3) to VN−1

as illustrated in Fig. 10.
We define θi, αi, βi, (i =
0, · · · , N − 3) as in Fig.
10, where αi, βi can be
expressed as functions of
θ = (θ0, · · · , θN−4) us-
ing the cosine theorem of
trigonometry and the fact
that the angles in the tri-
angle add to π. Note that
the angles in the N-2-th tri-
angle θN−3, αN−3, βN−3

can be automatically com-
puted from the angles of the firstN−3 triangles. The vertex angles
of the N-sided polygon Ψi (i = 0, · · · , N − 1) can be obtained as
follows:

Ψ0 = θ0 , (13)
Ψi = θi + αi−1, i = 1, · · · , N − 3 , (14)

ΨN−2 = αN−3 , (15)

ΨN−1 =

N−3∑
j=0

βj , (16)



and hence

ωi = Ψi + δi,1 + δi,2, i = 0, · · · , N − 1 . (17)

It is observed that concave polygons occur along the boundaries.
We accommodated such cases by introducing signs in θi. Suppose
vertices Vi are numbered in increasing numerical sequence in a
clockwise direction, θi is positive, if the line segmentViVi+1 is in
the clockwise direction of ViVN−1 with respect to Vi, and vice
versa. The concave vertex occurs at Vi if Ψi > π, which can be
further divided into the following two cases:

If θi < 0, we reset αi and βi as follows:

αi = 2π − αi , (18)
βi = −βi . (19)

Similarly if θi > π, we reset

αi = −αi , (20)
βi = −βi . (21)

Fig. 11 (a) illustrates the case when θ1 < 0, and V2 is a concave
vertex, whereas Fig. 11 (b) shows the case when θ0 > π, and V0

is a concave vertex.

(a) (b)

Figure 11: Concave polygons: (a) Pentagon with θ1 < 0. (b)
Pentagon with θ0 > π.

The objective function for minimization can be written as in the
four-sided patch case:

Fang(θ) =

N−1∑
i=0

(
ωi(θ)− π

2

)2

. (22)

The objective function (22) can be minimized by finding the roots
of ∇Fang(θ) = 0. The iterative scheme for Newton’s method can
be described as follows:

θk+1 = θk − [HFang(θk)]
−1∇Fang(θk), (23)

where [HFang(θk)]
−1 is the inverse of a Hessian matrix, and the

subscripts k and k+1 denote the k-th and k+1-th iterations. The
initial values for Newton’s scheme θ0 can be determined similarly
to the four-sided patch case.

4.4 Errors in angles

In this section we examine angle errors induced in the process of
unfolding principal patches onto the plane using a model of the
nose of a bullet train. Fig. 12 shows patch based color-coded errors
mapped onto the bullet train consisting of 51, 105, and 305 principal

patches, respectively. This indicates that the maximum angle error
decreases as the number of principal patches increases.

Figure 12: Color-coded angle errors mapped onto the nose of a
bullet train with 51 patches (left), 105 patches (middle), and 305
patches (right).

5 Fabrication of objects

Once all the principal patches are unfolded onto the plane, we con-
nect the principal quads one by one by aligning the equi-length
adjacent edges and by applying translations and rotations. Fig.
13 (a) illustrates an ellipsoid x2

a2 + y2

b2
+ z2

c2
= 1 of a=80mm,

b=60mm, c=40mm, which contains four lemon-type umbilical at(
±a

√
a2−b2

a2−c2
, 0, ±c

√
b2−c2

a2−c2

)
consisting of four two-sided and

178 four-sided principal patches. We can unfold these principal
patches onto the plane to generate principal quads as shown in Fig.
13 (b). If we align the quads along the minimum principal curva-
ture, the resulting strip is the maximum principal strip as shown in
Fig. 13 (c), whereas if we align quads along the maximum princi-
pal curvature, the resulting strip is the minimum principal strip as
shown in Fig. 13 (d).

Using this orthogonal set of strips, we are able to reconstruct the
original 3D shape of the input object in two ways. The first is to
form two-layered principal strips, whereas the other involves fabri-
cating the woven principal strips.

5.1 Two-layered principal strips

The two-layered principal strip structure consists of a layer of max-
imum principal strips and a layer of minimum principal strips as
shown in Fig. 13 (e) and (f). We emphasize the lines of curvature
by using yellow and golden yellow colors for the maximum princi-
pal strips, whereas blue and light blue colors are used for the min-
imum principal strips. We adhere a pair of quads that have exactly
the same shape, but different colors.

This unit structure can be stacked to form a multi-layered shell
structure. Up to now, we have not taken into account the ma-
terial thickness; however, this assumption may not be true if the
number of layers becomes large. Suppose the strip thickness is
t, then the lines of curvature must be computed on the offset sur-
face r̂(u, v)=r(u, v)+ tN(u, v), whereN(u, v) is the unit surface
normal vector. It is well known that the lines of curvature of off-
set surfaces correspond to each other [Willmore 1959]. In other
words, if the lines of curvature are computed on the reference sur-
face r(uk, vk), then the corresponding lines of curvature on the off-
set surfaces are r̂(uk, vk). However, the geodesic curvature along
the lines of curvature on offsets must be computed by applying the
algorithm by [Joo et al. 2014] to r̂(u, v).

5.2 Woven principal strips

Woven principal strips are constructed by using an alternating
approach to pass each maximum principal strip over the mini-
mum principal strip, then under the next, and so on, and vice



(a)

(b)

(c) (d)

(e) (f)

(g) (h)

Figure 13: (a)Ellipsoid with evenly distributed lines of curvature.
(b) Unfolded principal quads. (c)Maximum principal strips. (d)
Minimum principal strips. (e) Two-layered principal strips with
maximum principal strips on the visible side. (f) Two-layered prin-
cipal strips with minimum principal strips on the visible side. (g)
Plain-weaving of the principal strips. (h) Woven principal strips.

versa. A rigid structure is ensured by adhering a pair of prin-
cipal quads. Fig. 13 (g) illustrates the process of weaving the
strips, and the resulting woven principal strips is depicted in Fig.
13 (h). The algorithm performs well for thin strips; however,
as the strip becomes thicker, it starts to overshoot at the borders
due to the bending rigidity as shown in Fig. 14, and hence the
strip needs to be elongated as in the figure below (white portions).
According to the beam
theory, the length of the
neutral axis of the strip
spanned by the central
angle α with the radius
of curvature ρ is ρα, and
hence the length of the
fiber at the surface of the
strip of thickness t is (ρ+ t

2
)α (see Fig. 14). Therefore, the strain

in the surface fiber is ε= (ρ+
t
2
−ρ)α

ρα
= t

2ρ
. Referring to Fig. 14 the

amount of elongation necessary for the quad for the plain-weaving
procedure can be estimated as δ=4ρ(α− sinα)= 2t

ε
(α− sinα). In

this paper we use α=π
4
, and the strain ε corresponding to the yield

stress, which depends on the material used.

Figure 14: Amount of elongation necessary in plain-weaving for a
quad with thickness t.

5.3 Accuracy evaluation of fabricated objects

In this section, we examine the accuracy of the fabricated mod-
els by first comparing the differences in the surface areas between
the unfolded quads and their corresponding CAD models and then
evaluating the distances between the laser-scanned point clouds of
the objects and their corresponding CAD models. Fig. 15 shows
patch-based color-coded surface-area errors mapped onto an ellip-
soid and the nose of a bullet train consisting of 182 and 177 prin-
cipal patches, respectively. The errors are normalized by the areas
of the corresponding principal patches. Table 1 lists the entire sur-
face area errors EArea of the two models. Although there are a few
principal quads that have a surface-area error near 10% (see Fig.
15), the entire surface-area errors for the ellipsoid and bullet train
are merely 1.15% and 0.666%, respectively (see Table 1). Large er-
rors occur in regions having large Gaussian curvatures (see Fig. 16)
and at the three-sided patches where the three edges of the flattened
curves automatically determine a unique triangle.

Next, we examine the accuracy of fabricated models by laser-
scanning them and comparing the point clouds with their corre-
sponding CAD models. We use a 3D laser scanner (Roland PICZA
LPX-60) to inspect the accuracy of the fabricated objects. Since
the point clouds of the laser-scanned fabricated models and CAD
models are constructed in different coordinate systems, rigid-body



Figure 15: Color-coded surface-area errors mapped onto an ellip-
soid consisting of 182 patches and the nose of a bullet train con-
sisting of 177 patches.

Figure 16: Gaussian curvature maps of the ellipsoid and bullet
train models.

translations and rotations must be iteratively applied to the point
clouds in order to bring them into the closest correspondence with
the CAD models [Hirano et al. 2009]. This iterative procedure is
called localization. Once the point cloud and the corresponding
CAD model are localized, we compute the distance between the
point cloud and the CAD model, as shown in Fig. 17. The max-
imum and average distance errors normalized by the length of the
bounding box diagonal of the model, EDMax and EDAve, are
listed in Table 1. The results for the surface-area and distance errors
clearly indicate that the fabrication of freeform objects by principal
strips is quite accurate, which justify that our unfolding algorithm
based on local minimization is sufficiently accurate for 3D fabrica-
tion.

The following is an intuitive explanation. The smoothed surface is
tessellated into an orthogonal net of lines of curvature in a global
manner yielding a set of quadrilateral principal patches. At this
point, the error is zero except for the numerical integration error
for computing the lines of curvature. We then map the four sides
of each principal patch onto a plane by preserving the exact length
and by connecting the sides approximately orthogonal to each other
in a local manner. Even though the flattening process of principal
patches is computed locally, the original principal patches are seg-
mented globally, and hence we believe that the reconstruction to 3D
will generate a surface close to the original one.

6 Results

In this section, we demonstrate the effectiveness of our algorithm by
applying it to four models: an automobile consisting of hood, front
and rear wheelhouses, roof, a bullet train, a hyperbolic paraboloid,
and a Dupin cyclide. All the computations were performed on a PC
with a core i7-5820-K 3.30 GHz processor and 32 GB of RAM.

Figure 17: Localized laser-scanned point cloud of the ellipsoid and
bullet train models with respect to their CAD models.

Table 1: Surface-area errors normalized by the corresponding
(faired) input surface area and the distance errors normalized by
the length of the bounding box diagonal of the model.

# of principal EArea EDMax EDAve
Model patches [%] [%] [%]

Ellipsoid 182 1.15 1.12 0.188
Bullet train 177 0.666 1.92 0.323

6.1 Computational time

The computational time for the unfolding process with respect to
the number of principal patches is plotted in Fig. 18. We can ob-
serve that the computational time is proportional to the number of
principal patches. This result is obvious because the unfolding pro-
cess depends on solving Newton’s method for a single variable for
each principal patch, which on average converges within five iter-
ations; therefore, the process can be considered as requiring con-
stant time. We note here that we need to solve Newton’s method
for (N-3) variables for an N-sided patch; however, the occurrence
of such patches is small. Although the surface models and com-
puters are different, the run times of our unfolding process are in
milliseconds, whereas the computational time of [Pottmann et al.
2008], which uses global minimization, is in seconds. Recently,
Tang [2016] further reduced the computational time so that it is fast
enough for interactive modeling by adopting the method of [Tang
et al. 2014] for solving the constraint equations related to developa-
bility. However, their speed is still in the order of seconds, while
our method is in milliseconds.

Figure 18: Computational time for the unfolding process with re-
spect to the number of principal patches.



Figure 19: Fabrication of freeform objects by principal strips for five different models. Left-to-right: Hood, front wheelhouse, rear wheel-
house, roof, and the nose of the bullet train. Top-to-bottom: Faired model with lines of curvature, unfolded maximum principal strips,
unfolded minimum principal strips, photos of reconstructed two-layered principal strips (maximum principal strips on the visible side),
photos of reconstructed two-layered principal strips (minimum principal strips on the visible side), and photos of woven principal strips.



Surface fairing Unfolding of principal strips
Model λf EDAve EDMax # of principal Comp. time EAngAve EAngMax EArea

[%] [%] patches [msec] [deg] [deg] [%]
Hood 0.01 0.0237 0.134 118 0.517 0.399 2.95 0.664

Front wheelhouse 0.05 0.260 2.54 73 0.552 0.540 2.11 0.928
Rear wheelhouse 0.05 0.0435 0.256 58 0.407 0.418 2.63 0.906

Roof 0.04 0.142 0.992 100 0.506 0.362 3.47 1.13
Bullet train 0.004 0.155 1.16 177 0.662 0.665 3.70 0.666
Ellipsoid - - - 182 0.622 1.02 3.49 1.15

Hyperbolic paraboloid - - - 112 0.778 0.114 0.751 0.124
Dupin cyclide - - - 224 0.820 1.60 3.58 1.87

Table 2: Computational results. We use the following abbreviations: EDistAve and EDistMax are the average and maximum distance
errors, respectively, resulting from the fairing process, EAngAve and EAngMax are the average and maximum angle errors, respectively,
induced during the unfolding process. EArea is the surface-area error with respect to the corresponding surface area of the faired input
surface.

6.2 Applications

Papercraft

Fig. 19 depicts the results of our method applied to various
aesthetically pleasing smooth engineering surfaces of genus zero,
namely, surfaces of an automobile such as the hood, front wheel-
house, rear wheelhouse, roof, and the nose of the bullet train.
The first row shows the faired surface models with evenly dis-
tributed lines of curvature. The second and third rows depict the
unfolded principal quads aligned along minimum/maximum princi-
pal lines of curvature yielding maximum/minimum principal strips,
respectively. The fourth and fifth rows show the two-layered max-
imum/minimum principal strips on the visible side, respectively.
The bottom row shows the woven principal strips.

Fig. 20 shows a ring Dupin cyclide, which is a surface of genus
one, having parameters a=100, b=95, and μ=60. The parameters
are defined in [Pratt 1990]. Fig. 20 (a) depicts the model with
lines of curvature, (b) is a photo of woven principal strips, (c) is an
exterior view of the architectural design using the Dupin cyclide.

The woven principal strips of the models clearly show that the net
of the reconstructed principal strips is orthogonal, and provide an
artistic touch to the appearance of the objects. It is possible to use
these orthogonal strips as guidelines for reinforcement (see Figs. 20
(c) and 23 (b)), because the surfaces are bent the most along these
principal strips. Furthermore, N-sided patches effectively handle
the singularity of the orthogonal net due to the existence of the um-
bilical points.

In Table 2, we summarize the distance errors ED , which are nor-
malized by the length of the bounding box diagonal of the model
generated during the fairing process, the angle errors EAng , the
surface-area errors with respect to the corresponding surface areas
of the faired input surfaces EArea induced during the unfolding
process, and the run times. Since the lengths of the sides of the
quads are exact and the errors in the angles and areas are small, we
can say that our unfolding algorithm based on local optimization is
quite accurate.

Plastic plates and sheet metals

Thus far we have fabricated objects with paper, but in this sec-
tion, we extend our method to other materials, namely plastics, alu-
minum, and brass. Fig. 21 shows a hyperbolic paraboloid recon-
structed by woven plastic principal strips for architectural design.
As the thickness of the plastic is 0.35 mm, which is not negligibly
thin, the stretch is taken into account for every principal quad.

(a) (b)

(c)

Figure 20: A Dupin cyclide. (a) The model with lines of curva-
ture. (b) Photo of fabricated Dupin cyclide. (c) Exterior view of the
architectural design.

Figure 21: Woven principal strips for plastic plate. Hyperbolic
paraboloid is used for architectural design with plastic plates.



Fig. 22 depicts an example of sheet metal craft consisting of alu-
minum and brass sheets for the fabrication of the hood model in
Fig. 19. The thickness of both sheet metals are 0.1 mm, and hence
the stretch is taken into account.

Figure 22: Woven princi-
pal strips for sheet metals.
Hood of the automobile is
fabricated by sheet metals
of principal strips.

Reinforcement along lines of curvature

One of the advantageous properties of orthogonal principal strips
is that they indicate directions for reinforcement of the structure as
the surfaces are bent the most along the lines of curvature. Because
the principal strips are almost straight in the hyperbolic paraboloid
model (see Fig. 21), carbon fiber reinforced plastics (CFRPs) based
on a two-layered structure can be effectively used for fabrication.

If the stiffeners or frames are added along the lines of curvature, as
illustrated in Fig. 23 (a) and (b), the resulting structure would be
reinforced.

(a)

(b)

Figure 23: Reinforcement along lines of curvature. (a) Exterior
view of the architectural design using ellipsoid. (b) Interior view
showing the stiffener/frame along lines of curvature.

7 Conclusion

We have introduced novel methods to reconstruct objects of which
the boundary consists of freeform surfaces by using orthogonal

two-layered principal strips and woven principal strips. The unfold-
ing algorithm reduces to finding the root of a single variable non-
linear equation, which is easy to implement and computationally
efficient. Moreover, it is capable of processing cases with umbili-
cal points where the orthogonal net of lines of curvature becomes
singular.

As demonstrated by way of examples, the new concept of using
orthogonal principal strips provides an artistic touch to the appear-
ance of objects, and shows guide lines for possible reinforcement.
Our unfolding algorithm is computationally efficient, as it depends
on solving Newton’s method for a single variable for each principal
patch. Nevertheless, our algorithm accurately reconstructs input
freeform objects. Moreover, the fabricator does not need to ad-
just the amount of bending of the strips during construction, as the
construction process of the orthogonal strips automatically reforms
the design shape as if the shape is memorized. We have applied
our method to various freeform surfaces and materials and demon-
strated the effectiveness of our algorithm.

Limitations and future work

The nature of lines of curvature is such that they tend to be dense
in high-curvature and sparse in low-curvature regions. Therefore,
the current algorithm is unable to accommodate surfaces with high
variations in curvature. In future we plan to apply our method to
forming sheets of CFRPs.
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A.1 Derivatives required in Newton’s method for a
four-sided patch

First derivatives:

ω̇0 = Ψ̇0 = 1 (A-1)
ω̇1 = Ψ̇1 = θ̇1 + α̇0 (A-2)
ω̇2 = Ψ̇2 = α̇1 (A-3)
ω̇3 = Ψ̇3 = −(1 + α̇0 + θ̇1 + α̇1) (A-4)

α̇0 = − ˙cosα0√
sin2 α0

(A-5)

θ̇1 = − ˙cosθ1√
sin2 θ1

(A-6)

α̇1 = − ˙cosα1√
sin2 α1

(A-7)

ė = ade−1 sin θ0 (A-8)

˙cosα0 = − ė(a2 − e2 − d2)

2ae2
(A-9)

˙cosθ1 = − ė(b2 − e2 − c2)

2be2
(A-10)

˙cosα1 = −eė

bc
= −ad

bc
sin θ0 (A-11)



Second derivatives:

ω̈0 = Ψ̈0 = 0 (A-12)
ω̈1 = Ψ̈1 = θ̈1 + α̈0 (A-13)
ω̈2 = Ψ̈2 = α̈1 (A-14)
ω̈3 = Ψ̈3 = −(α̈0 + θ̈1 + α̈1) (A-15)

α̈0 = − sin2 α0 ¨cosα0 + cosα0 ˙cos2α0

sin2 α0

√
sin2 α0

(A-16)

θ̈1 = − sin2 θ1 ¨cosθ1 + cos θ1 ˙cos2θ1

sin2 θ1
√

sin2 θ1
(A-17)

α̈1 = − sin2 α1 ¨cosα1 + cosα1 ˙cos2α1

sin2 α1

√
sin2 α1

(A-18)

ë = ade−1(cos θ0 − e−1ė sin θ0) (A-19)

¨cosα0 =
(2ė2 − eë)(a2 − d2) + e3ë

2ae3
(A-20)

¨cosθ1 =
(2ė2 − eë)(b2 − c2) + e3ë

2be3
(A-21)

¨cosα1 = − ė2 + eë

bc
= −ad

bc
cos θ0 (A-22)
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